UNLV Zero or Near-Zero Energy House Projects in Las Vegas

Robert Boehm Center for Energy Research, UNLV Las Vegas, NV

February 3, 2009, Colorado Springs, Colorado

Experiences with Zero or Near Zero Energy Houses

- Project 1. Funded in 2004 by NREL. Worked with a builder in Las Vegas to develop a ZEH similar to general tract houses in Las Vegas. Monitor. Compared to conventional house.
- Project 2. Funded in 2008 by NV Energy with PUCN pass-through funding. Pulte Homes and UNLV to determine cost/benefit ratio for moving toward ZEH construction.
- Project 3. New, funded by DOE to UNLV.
 Works with Pulte Homes and NV Energy to decrease substantially peak energy demand of a total development.

Fact of Life: Las Vegas

- Summer times are long and hot
- Very little night time cooling occurs here
- 24 hour air conditioning is clearly the dominant energy load
- This greatly exacerbates to the peak energy demand on the electric utility
- Public Utility Commission is encouraging evaluation of programs that will decrease the peak demand

First Project: Construction

"Baseline" Home

ZEH

- One typical tract house built to code. One designed on same plan but modified under the skin to ZEH.
- Identical but mirrored floor plan.
- Roof of ZEH oriented to give better north-south exposure for roofmounted solar components.

Construction

Some of the ZEH Modifications:

- T-mass walls,
- Exterior slab insulation and added attic insulation,
- Reflective roof sheeting,
- Spectrally selective windows, large overhangs over patio doors,
- Compact fluorescent lighting,
- Freus high efficiency water-cooled condenser AC,
- HVAC ducting installed in conditioned spaces,
- On-demand tankless water heater,
- Integrated storage collector solar water heater for hot water makeup,
- 5-kWe roof integrated photovoltaic panels.

Construction

Data Monitoring

Monitoring Sensors:

Temperatures:

- Exterior walls 4 locations
- Attic air 2 locations
- Room air 2 locations
- Supply air 2 locations
- Water heaters hot and cold water.
- Slab (Baseline) 3 locations
- Slab and pad (ZEH) 4 locations at various depths
- Exterior soil temperature (ZEH)
- Freus AC water sump (ZEH)
- AC hydronic heating coil water (ZEH)
- PV plate temperatures 2 locations (ZEH)
- Ambient air

[&]quot;Baseline" Floor Plan

Data Monitoring

Monitoring Sensors cont:

Heat Flux:

- Inside surface of exterior walls 4 locations
- Ceiling surfaces 2 locations
 Hot Water Energy Flow:
- Water meter for water heaters
- Water meter for solar water heater (ZEH)
- Hydronic heating coil (ZEH)
 Water Consumption:
- Whole house pulse meter
- Hot water
- Freus air conditioner water meter (ZEH)

ZEH Floor Plan

Data Monitoring

- Whole house gas consumption for both houses is measured with RIOTronics PulsePoint retrofit gas meter pulse devices which were added to the main house gas meters by the gas utility,
- gas consumption for the water heaters for both houses and the gas furnace in the Baseline house are measured using E-Mon Model 200CFGM gas meters with pulse outputs,
- Omega and Seametrics Flow meters used to measure water flows,
- Omega Thin Film Heat Flux sensors are used to measure heat flux through walls and ceilings,
- Various J-type thermocouples are used to measure temperatures.

Data is currently logged in one minute increments and downloaded remotely to a server at UNLV for analysis.

Totals: ZEH = 2,688 kWh Baseline= 9,667 kWh

ZEH Uses 72.2% less grid energy than Baseline

(Note: July data is for partial month at the time of this slide was plotted)

Total PV produced = 5,634 kWh

Net Electric Energy = 2,080 kWh excess

Peak Energy Usage

- Nevada Power Peak Season
 June 1st September 30th
- Peak Hours1:00 pm 7:00 pm
- Some Data

June: ZEH used <u>88%</u> less peak energy

Overall: ZEH used <u>85%</u> less peak energy

Energy savings of individual features

Item	Cooling elec. +lights (kWh)		Thermal (kBtu)	
Baseline	5558		29475	
Slab	5480	-78	27171	-2304
Lights	4745	-813	35592	6117
Windows	4764	-794	25923	-3553
Roof	5381	-177	28605	-870
T-Mass	5523	-35	26296	-3179
A/C (Furnace)	3720	-1838	34299	4824

Savings for Each Individual Item In ZEH Compared to Baseline

Item	Cooling elec. +lights (kWh)		Thermal (kBtu)	
Baseline	5558		29475	
Slab	5480	-78	27171	-2304
Lights	4745	-813	35592	6117
Windows	4764	-794	25923	-3553
Roof	5381	-177	28605	-870
T-Mass	5523	-35	26296	-3179
A/C (Furnace)	3720	-1838	34299	4824

New Zero Energy House Project

- Funded by NV Energy
- Contractors: UNLV CER and Pulte Homes
- Quantify the costs of production homes moving toward zero energy
- Estimate initial cost vs. energy saved
- Hope to supply quantitative data for a rebate program from NV Energy to builders
- Uses Pulte Villa Trieste development

Newest Project: Peak Demand Reduction in a Development

- Funded by the US DOE to UNLV, with NV Energy and Pulte Homes as subcontractors
- Objective is reduce the peak electrical demand for a development at least 65% over standard, code-built homes (we think it may be over 80%)
- Requires some similar concepts a ZEH design, but focuses on peak demand
- Accomplishing by energy conserving design, PV panels, utility-customer price communication and control, storage battery
- Project has just begun, focusing on Villa Trieste development of Pulte Homes

Villa Trieste Development

Development, located near Red Rock National Wilderness Area, has LEED Platinum rating, two-story houses in the range of 1800-2100 sq ft, low \$200,000s each. 1.7 kW PV.

Possible Energy Efficiency Upgrades-Villa Trieste Moving Toward Zero Energy

Product	Code Minimum	Current	Proposed	Upgrade Cost
Windows	U-Value: 0.65 SHGC: 0.40	Vinyl, Low-E double pane U-Value: 0.36, SHGC: 0.30 UV light transmit.: 14-16%	Vinyl, Low-E double pane U-Value: 0.30, SHGC: 0.27 UV light transmittance: 5%	\$120-\$160
Air-conditioner	13 SEER	42 kBtu/hr; 15 SEER	17.5 SEER; 20 SEER	\$2,200; \$3,080
Mechanical Ventilation	Recommended min. 0.35 ACH (typically achieved by infiltration)	Air Cycler with no heat recovery (homes are built tightly, need additional ventilation)	Energy recovery ventilator (ERV)	\$2,060
Wall insulation	R-13	2x4 walls R-13 cellulose insulation and 1" EPS (R-4)	2x6 walls R-21 cellulose insulation and 1" EPS (R-4)	\$880-\$1,060
"	II .	11	2x4 walls R-13 cellulose and 1" EPS (R-4) in exterior walls Icynene spray foam (reduced infiltration) in attic and floor	\$600-\$700
Floor cavity insulation	R-19	R-19 cellulose	R-30 cellulose	\$600-\$700
Pipe insulation	None	None	All hot water pipes	~\$350
Roofing	N/A	Cement tiles directly atop roof sheathing	Raised roof battens	\$250-\$300

These are builder estimates for production homes in Las Vegas

Summary

- Have demonstrated a way of isolating actual performance of individual components in building of many energy saving items.
- We are now able to supplement that with a cost/benefit analyses at the design stage.
- This will be monitored and evaluated to substantiate the method.
- End result is to have data to furnish to Public Utility Commission for possible rebate program assessment.

Thanks.

Contacts

boehm@me.unlv.edu

702/895-4160